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Euler �ow in a supersonic mixed-compression inlet
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SUMMARY

Numerical simulation of a two-dimensional mixed compression supersonic inlet is carried out by solving
unsteady compressible Euler equations via a stabilized �nite element method. The geometry of the inlet
is similar to the one used by Anderson and Wong for experimental investigation for Mach 3 �ow. The
computations are capable of simulating the start-up problems associated with the inlet. The critical back
pressure for the successful operation of the inlet is computed. The e�ect of inlet back pressure on the
total pressure recovery and the �ow distortion level is analysed. Contrary to the popular belief, it is
found that in addition to the throat to inlet capture area ratio, the ramp geometry close to the throat
plays an important role in the start-up dynamics. It is demonstrated via simulations that, everything else
being same, the geometries of ramp upstream of the throat that are associated with a curvature higher
than a certain threshold, result in unstarting the intake. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: supersonic �ow; air intake; mixed compression; �nite element; Euler equations; start-up

1. INTRODUCTION

A supersonic intake decelerates the air from supersonic in�ow to low subsonic at the out-
�ow. It must provide su�cient amount of air under all operating conditions without disrupting
high-lift=low-drag aerodynamics of the airframe. E�ciency of air-breathing engines depends
strongly on the inlet characteristics. For �ight Mach number greater than 2.5,
a mixed-compression supersonic inlet is often used. It is characterized by multiple re�ected
oblique shocks in the convergent portion and a terminal normal shock immediately down-
stream of the throat. A typical mixed compression inlet consists of two parts: supersonic
di�user just upstream of the throat and a subsonic di�user that lies downstream of the throat
section. Details regarding the design and operation of a mixed compression inlet can be found
in Reference [1]. During the critical operation of the inlet, the normal shock sits right at the
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throat and any further increase in the back pressure causes the �ow to become unstable. In the
subcritical regime, the normal shock is pushed in the convergent part of the intake. In such
a state, the normal shock can be expelled out and the intake can ‘unstart’. The air intake is
also associated with the ‘buzz’ instability in which the normal shock oscillates back and forth
in the convergent portion leading to high unsteadiness in the �ow. It is encountered during
the subcritical mode of operation of the supersonic inlet. Details on this �ow instability can
be found in the paper by Dailey [2]. In the present work, the ‘start’ and ‘unstart’ of inlet is
simulated. However, the simulation of the ‘buzz’ instability requires the inclusion of viscous
e�ects and will be attempted in future work.
The two basic characteristics that greatly in�uence the performance of the inlet are the

total pressure recovery and the �ow distortion exiting the inlet and entering the engine com-
pressor. For e�cient operation, a supersonic intake must provide high total pressure recov-
ery and low �ow distortion index. Total pressure recovery (TPR) is de�ned as the ratio
of the area-weighted total pressure at inlet exit (pt02) and free stream total pressure (p01),
i.e. TPR=pt02=p01. Another important parameter that quanti�es the quality of �ow supplied
to the engine is the inlet distortion (ID). This index is related to the non-uniformity of
the �ow across the engine face. It is de�ned as the di�erence between the maximum and
minimum total pressures divided by the area-weighted total pressure at the inlet exit, i.e.
ID= (p02max − p02min)=pt02. Here, p02max and p02min are the maximum and minimum total
pressure at the inlet exit, respectively.
Anderson and Wong [3] studied a two-dimensional supersonic mixed compression inlet

at a design Mach number 3.0. A total pressure recovery of 0.90 was obtained with 14%
boundary-layer bleed based on the captured mass �ow. Wasserbauer et al. [4] conducted an
experimental investigation on a full-scale mixed compression inlet designed for the TF30-P-3
turbofan engine. Their measurements indicate an overall loss in the total pressure recovery of
nearly 10%. About 70% of the losses occur upstream of the throat station while the remaining
30% in the downstream part. The losses in the subsonic di�user can be attributed mainly to
the viscous e�ects. Majority of the total pressure losses in the inlet are due to the presence
of shocks.
Numerical computations on supersonic inlets have been carried out by several researchers.

For example, Knight [5, 6] studied two- and three-dimensional supersonic di�user �ows in
simple geometries. Reynolds-averaged Navier–Stokes equations along with a turbulence equa-
tion were solved. Liang and Chan [7, 8] carried out a fairly comprehensive study of a two-
dimensional mixed compression inlet. They solved the unsteady, compressible Navier–Stokes
equations in conjunction with the Baldwin–Lomax turbulence model. The geometry of the
inlet they modelled is similar to the one experimentally studied by Anderson and Wong [3].
More recently, Gokhale and Venkat [9] also analysed supersonic inlets for ramjet and scramjet
engines by using a explicit, �nite di�erence MacCormack scheme.
The governing equations for the inviscid �ow analysis are the compressible Euler equa-

tions in the conservation law form. In the present computation, governing equations are
solved using a stabilized �nite element formulation based on conservation variables. The
streamline-upwind=Petrov–Galerkin (SUPG) stabilization method [10–12] is employed to sta-
bilize the computations against spurious numerical oscillations due to advection dominated
�ows. A shock capturing term is added to the formulation to provide stability to the com-
putations in the presence of discontinuities and large gradients in the �ow [13–15]. The
impermeable wall boundary condition for velocity is treated implicitly by rotating the �ows
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locally. The normal and tangential components of the momentum are kept track of, rather
than the Cartesian components. The normal component of the momentum can then be set to
zero as a Dirichlet boundary condition. Movement between the normal-tangential components
frame and the Cartesian components frame is accomplished by using a local transformation
rule, dependent on the geometry of the boundary. More details on this can be found in
Reference [16].

2. THE GOVERNING EQUATIONS

Let � ⊂ R2 and (0; T ) be the spatial and temporal domains, respectively, and let � denote
the boundary of �. The spatial and temporal coordinates are denoted by x and t. The Euler
equations governing the �uid �ow, in conservation form, are

@�
@t
+∇ · (�u) = 0 on � for (0; T ) (1)

@(�u)
@t

+∇ · (�uu) +∇p = 0 on � for (0; T ) (2)

@(�e)
@t

+∇ · (�eu) +∇ · (pu) = 0 on � for (0; T ) (3)

Here �; u; p and e are the density, velocity, pressure and the total energy per unit mass,
respectively. Assuming, the air to be an ideal gas, the equation of state is given as
p=(� − 1)�i, where � is the ratio of speci�c heats and i is the internal energy per unit
mass. It is related to the total energy per unit mass and velocity as i= e − 1

2‖u‖2. The
temperature, �, is related to the internal energy as �=(� − 1)=Ri, where R is the ideal gas
constant. The compressible Euler equations (1), (2), and (3) can be written in the conservation
variables

@U
@t
+
@Fi
@xi

= 0 on � for (0; T ) (4)

where U=(�; �u1; �u2; �e), is the vector of conservation variables, and Fi is, the Euler vector
de�ned as

Fi=

⎛
⎜⎜⎜⎜⎜⎜⎝

ui�

ui�u1 + �i1p

ui�u2 + �i2p

ui(�e+ p)

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

Here ui are the components of the velocity. In the quasi-linear form, Equation (4) is
written as

@U
@t
+Ai

@U
@xi

= 0 on � for (0; T ) (6)
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where Ai= @Fi=@U is the Euler Jacobian Matrix. Corresponding to Equation (6), the following
boundary and initial conditions are chosen

U = g on �g for (0; T ) (7)

U(x; 0) = U0 on �0 (8)

3. FINITE ELEMENT FORMULATION

Consider a �nite element discretization of � into subdomains �e, e=1; 2; : : : ; nel, where nel is
the number of elements. Based on this discretization, we de�ne the �nite element trial function
space Sh and weighting function space Vh. These function spaces are selected, by taking the
Dirichlet boundary conditions into account, as subsets of [H1h(�)]ndof , where H1h(�) is the
�nite-dimensional function space over � and ndof is the number of degrees of freedom. The
stabilized �nite element formulation of Equation (6) is written as follows: �nd Uh ∈Sh such
that ∀Wh ∈Vh,

∫
�
Wh ·

(
@Uh

@t
+Ahi

@Uh

@xi

)
d� +

nel∑
e=1

∫
�e
�(Ahk)

T
(
@Wh

@xk

)
·
[
@Uh

@t
+Ahi

@Uh

@xi

]
d�

+
nel∑
e=1

∫
�e
�

(
@Wh

@xi

)
·
(
@Uh

@xi

)
d�= 0 (9)

In the variational formulation given by Equation (9), the �rst two terms and the right-hand
side constitute the Galerkin formulation of the problem. The �rst series of element-level inte-
grals in Equation (9) are the SUPG stabilization terms added to the variational formulation to
stabilize the computations against node-to-node oscillations in the advection–dominated range.
The SUPG formulation for the convection dominated �ows was introduced by Hughes and
Brooks [10] and Brooks and Hughes [11]. It was extended to the computation of compress-
ible �ows in the context of compressible Euler equations by Tezduyar and Hughes [12] and
Hughes and Tezduyar [17].
SUPG is an excellent method for computing problems with relatively smooth solutions.

However, it is not able to e�ectively control the localized oscillations that may arise due to
sharp layers and discontinuities. Hughes et al. [18] introduced a discontinuity-capturing term
that senses the sharp layers in the solution and acts only in the local region. In that sense,
unlike the SUPG, it is a non-linear method even when it is applied to a linear advection–
di�usion equation. The SUPG formulation along with the discontinuity-capturing term was
recast in the entropy variables formulation can be found in the work by Hughes et al. [19].
It was shown in LeBeau and Tezduyar [13] that the accuracy of the SUPG formulation in
conservation variables when supplemented with the discontinuity-capturing term, introduced
originally for entropy variables formulation, gives comparable accuracy. The second series
of element level integrals in the formulation given by Equation (9) are the shock capturing
terms that stabilize the computations in the presence of sharp gradients [13]. The stabiliza-
tion coe�cients � and � are the ones that were used in our earlier work [14, 20] and quite
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similar to those employed by Aliabadi and Tezduyar [21]. They are de�ned as

� = max[0; �a − ��] (10)

�a =
h

2(c+ ‖u‖)I (11)

�� =
�

2(c+ ‖u‖)2 I (12)

� =

⎡
⎢⎢⎢⎣

(
@Uh

@t
+Ai

@Uh

@xi

)
·A−1

0

(
@Uh

@t
+Aj

@Uh

@xj

)

@�l
@xj
@Uh

@xj
·A−1

0
@�l
@xk

@Uh

@xk

⎤
⎥⎥⎥⎦

1=2

(13)

where c is the wave speed, h is the element length, �l; l=1; 2 are the components of the
(element) local coordinates and A−1

0 is the inverse of Reimannian metric tensor related to the
transformation between the conservation and entropy variables [22]. Compared to the de�nition
for � in Le Beau and Tezduyar [13] the de�nition given by Equation (13), introduced by
Mittal [14, 20], includes the unsteady term in the computation of the residual for calculating the
shock-capturing parameter. The inclusion of this term renders consistency to the formulation,
even for unsteady computations, at-least in the case of inviscid �ows. It was reported in
Reference [14] that, if the unsteady term is not included in the de�nition of �, one may
obtain overly damped solutions for unsteady �ow problems. For, e.g. in the computation of
unsteady �ow past a NACA0012 airfoil at Re=10000 and zero incidence, the exclusion of
the unsteady term in Equation (13) alters the vortex shedding, signi�cantly. Of course, for
steady computations, this term does not a�ect the �nal solution. In fact, one would like to
drop this term to gain extra stability to converge to the �nal solution. In the present work,
most of the computations lead to steady solutions. In such cases, the inclusion of the unsteady
term in Equation (13) has no e�ect on the �nal solution. The matrix �� is subtracted from �a
to account for the shock-capturing term as shown in Equation (10).
To facilitate the implementation of the boundary conditions for the velocity �eld for the

Euler equations, the velocity at a solid boundary is written, not in terms of the Cartesian
components, but the normal and tangential components. This rotation is applied at each node
and a homogeneous Dirichlet boundary condition is applied to the normal component of
velocity on each node lying on a solid surface. The details of the implementation can be
found in Reference [16]. The extension of the formulation, presented above, to compute
viscous �ows and its applications to various internal and external �ows can be found in our
earlier articles [14, 15, 20, 23].
The time discretization of the variational formulation given by Equation (9) is done via the

generalized trapezoidal rule. For unsteady computations, we employ a second-order accurate-
in-time procedure.
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4. RESULTS

4.1. Inlet geometry and computational domain

The two-dimensional supersonic �ow mixed compression inlet that is studied here is similar
to the one employed by Anderson and Wong [3] for their experimental investigations. The
details of the inlet, along with the dimensions, are shown in Figure 1. The geometric throat
is located at 58:8′′ from the leading edge of the intake. The �rst compression ramp is at
an angle of 7◦ to the �ow and is 28′′ long. It is followed by the second ramp which is at
an angle of 14◦ to the free-stream �ow. The geometry of the ramp surface between the end
of second linear segment of the ramp and throat, i.e. points d and e (refer to Figure 1), is
de�ned by a cubic polynomial. The four constants of this polynomial are evaluated based on
the locations and slopes of points d and e. In the intake employed by Anderson and Wong [3],
the second ramp extends to 54:1′′ from the leading edge. This con�guration will be referred
to as R54:1 and is shown in Figure 2 along with other ramp geometries. The geometry shown
in Figure 1, R52:1, extends to 52:1′′ from the leading edge of the intake. In the present study,
computations are carried out for four ramp geometries. These are shown in Figure 2. For two
of them, the inlet fails to ‘start’. Anderson and Wong [3] had performed experiments on the
air intake with various lengths of the subsonic part of the di�user. In the present work, the
geometry with the short di�user has been studied. The total length of the intake is 101:5′′.
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Figure 1. Geometry of the supersonic mixed-compression inlet.
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Figure 2. Geometries of the air intakes with di�erent lengths of the second ramp. All intakes
have the same total length and throat area.

The throat area for the present study is an increase of 7% over the original geometry that
was used by Anderson and Wong [3]. In their experiments with the R54:1 geometry, Anderson
and Wong [3] had employed a 14% boundary layer bleed based on the captured mass �ow. In
the present study, with no boundary layer e�ects being simulated, bleed is not being used. Con-
sequently, the throat area of the original geometry is not enough to allow all the captured mass
�ow to pass through. A terminal normal shock appears upstream of the throat and is eventually
expelled out. Hence, the inlet geometry is modi�ed to operate with the increased mass �ow
rate (without bleed). Figure 1 shows the modi�ed geometry that is being used in this study.
A schematic of the computational domain is also shown in Figure 1 via broken lines.

The length of the intake, 101:5′′, is utilized to non-dimensionalize the spatial dimensions.
The �ow enters through the boundary a–k and exits from the boundaries f–g and i–j. The
non-dimensional height of the computational domain, a–k, is 0:98. The in�ow boundary is
located 0:2 units upstream of the leading edge of the inlet. The vertical location of boundary
j–k is chosen such that the shock from the engine cowl, h– i, leaves the computational
domain through the out�ow boundary i–j. Internal as well as �ow external to the intake is
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computed. In contrast, the vertical extent of the computational domain for the study by Liang
and Chan [8] is restricted to the height of the intake. All the results in the article are shown
with respect to the non-dimensionalized variables.

4.2. Boundary and initial conditions

Figure 1 shows the extent of the computational domain via broken lines. Free-stream condi-
tions corresponding to Mach 3 �ow are speci�ed at the in�ow boundary a–k. The free-stream
�ow is aligned with the intake. On the cowl and the ramp surface, the normal component of
the velocity is assigned a zero value. The tangential component of velocity is unknown and
is determined from the computations. On the upper and lower boundaries, a–b and j–k, the
normal component of velocity is speci�ed to be zero. The initial condition for the computa-
tions corresponds to the speci�cation of free-stream conditions in the entire domain. At t=0+

the boundary conditions on the intake and the cowl walls are enforced. First, computations are
carried out for supersonic out�ow at the exit f–g of the intake. This is achieved by specifying
no boundary conditions at the out�ow. Once the �ow is established and a steady-state �ow
has been realized, the back-pressure, pb, at the exit of the intake is imposed. Computations
are carried out for various values of pb=pi, where, pi is the inlet static pressure. pb=pi is
increased till at a certain critical value the inlet ‘unstarts’.

4.3. The �nite element mesh and convergence

The �nite element mesh consists of a combination of structured and unstructured parts. Close
to the solid boundaries, a structured mesh is generated. This will be useful for controlling the
size of elements within the boundary layer when attempting viscous computations in future.
The unstructured mesh is created using Delaunay triangulation. A typical mesh used for the
computations is shown in Figure 3.
To establish the adequacy of the �nite element mesh being used in this study, a convergence

study has been carried out. The solution for the R52:1 geometry with pb=pi = 20 is computed
with three di�erent meshes. Mesh M1 consists of 67 339 triangular elements and 34 182 nodes.
In mesh M2 the number of elements and nodes are, 127 012 and 64 274, respectively. The
corresponding numbers for mesh M3 are 214 528 and 108 288. The solutions obtained with
the three meshes are shown in Figures 4 and 5. The maximum di�erence at any node between
the results obtained with meshes M1 and M2 is less than 3%. The results obtained with meshes
M2 and M3 are virtually identical. This suggests that mesh M2 is adequate to accurately
capture all the details associated with this �ow. All the results in the remaining part of the
paper have been computed by using mesh M2.
The �ow structure observed in Figure 4 is very typical of that seen in such air intakes.

The oblique shock generated from the �rst ramp hits the cowl lip and is re�ected back to
the ramp. Another oblique shock is generated at the second ramp and subsequent re�ections
result in a train of shock waves. The �ow is slowed down by each of the shock as shown
in the plot showing the Mach number distribution in Figure 5. The rise in pressure after
each shock can also be noticed in the plot showing the pressure distribution in Figure 5. As
a result of the �ow deceleration, the Mach number at the geometric throat is slightly higher
than 1.0. In the divergent part, downstream of the throat, the �ow expands. To adjust to the
speci�ed pressure at the exit, a normal shock is formed in the latter part of the intake. As
the back pressure at the exit of the intake is increased, the normal shock moves upstream till

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1405–1423



SUPERSONIC MIXED-COMPRESSION INLET 1413

Figure 3. Flow in an air intake: close up views of the �nite element mesh. The
mesh consists of 64 274 nodes and 127 012 triangular elements. The lower �gure

shows the mesh in the throat region.

it reaches the throat. Any further increase in the back pressure results in the expulsion of the
shock and the inlet ‘unstarts’.

4.4. E�ect of back pressure

Computations are carried out for various back pressure conditions at the exit of the air intake
corresponding to the R52:1 con�guration. Figure 6 shows the Mach number �eld for various
values of the back pressure. The top row shows the solution for the case when no boundary
condition is applied at the intake exit. This results in a supersonic �ow at the out�ow. On
imposing back pressure, a normal shock appears in the divergent portion of the intake, and
the �ow at the exit becomes subsonic. The shock moves upstream towards the throat as the
back pressure is increased. For pb=pi = 32:4, the normal shock reaches the geometric throat.
The Mach number and pressure along the ramp surface for various values of back pressure
are shown in Figure 7.
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Figure 4. M =3, pb=pi = 20 �ow in an air intake: iso Mach number contours
obtained with di�erent �nite element meshes.

Also shown in Figure 7 is the pressure distribution reported by Liang and Chan [8] for
their computations for pb=pi = 31. The agreement between the present results and those from
Liang and Chan [8] is excellent in the convergent part of the inlet. The results reported by
Liang and Chan [8] are for a longer di�user geometry corresponding to a total intake length of
119′′. Also, while Liang and Chan [8] computed a viscous �ow, the present study is restricted
to inviscid �ow. To start the inlet they found it necessary to increase the throat area by 2%,
as compared to the geometry used by Anderson and Wong [3] and use a minimum of 12%
of boundary layer bleed. In addition, they simulated the e�ect of vortex generators in their
computations. For these reasons, there are some di�erences between the pressure distributions
from the two sets of computations downstream of the throat. The critical value of pb=pi from
the present study is 32:4. It is close to 31:5 from the study by Liang and Chan [8]. As expected,
viscous e�ects lower the critical back pressure for stable operation of the intake. Qualitatively,
the two sets of results, close to the critical value of back pressure, are in good agreement.
An optimal inlet operating point requires the �ow to have a high total pressure recovery

and a low �ow distortion level. To achieve this objective the terminal normal shock should
be located close to the geometric throat. For pb=pi = 32:4, the total pressure recovery and
�ow distortion factor are found as 92:8 and 4%, respectively. Liang and Chan [8] found the
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Figure 5. M =3, pb=pi = 20 �ow in an air intake: Mach number (top) and pressure (bottom) distribution
on the ramp surface obtained with di�erent �nite element meshes.

corresponding total pressure recovery at the critical pressure (=31:5pi) to be 87:6%. For
pb=pi = 31:5, the present computations result in pressure recovery of ∼ 90:5. As expected,
the numbers indicate that the viscous e�ects lead to a deterioration in the performance of the
inlet. In the current study, based on the locations of geometric throat and normal shock, the
inlet stability margin, at the critical pressure, is found to be 2:57%.
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Figure 6. M =3 �ow in an air intake for the R52:1 ramp geometry: Mach number distribution for
di�erent values of back pressure. Also shown is the associated colour map.

On increasing pb=pi to 32:42 the normal shock moves to the convergent part, ahead of the
throat, and the inlet unstarts. The Mach number distribution at various time instants is shown
in Figure 8. It is interesting to notice the movement of the normal shock and its interaction
with the other shocks as it is expelled out. The slip stream that is generated when a normal
shock intersects an oblique shock is clearly observed in these pictures. As the normal shock
moves upstream of the second ramp and the cowl-lip, the external �ow over the cowl is also
disturbed and its spillage is quite apparent. Eventually, the normal shock hits the upstream
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Figure 7. M =3 �ow in an air intake for the R52:1 ramp geometry: Mach number (top) and pressure
on the ramp (bottom) distribution for di�erent values of back pressure.

boundary at which point the computations break down. This simulation clearly demonstrates
the capability of the present methodology to predict ‘unstart’ of air intakes. In the next step
we would like to include the viscous e�ects and look into the possibility of simulating the
‘buzz instability’ [2] in air intakes.
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Figure 8. M =3, pb=pi = 32:42 �ow in an air intake for the R52:1 ramp geometry: Mach
number distribution at various time instants.

TPR and ID for various values of the back pressure are shown in Figures 9 and 10. They
are found in good agreement with the experimental data [3]. Also shown in Figure 9 is
the contribution of the normal shock and oblique shocks to the total pressure loss. Using
the Rankine–Hugoniot relations, the total pressure loss across a terminal normal shock at
Mach 3.0 is found to be 67.17%. In contrast, the total pressure loss for the present intake
for pb=pi = 32:4 is 7:18%. The present computations show that the TPR and ID are within
acceptable limits for the intake to operate at pb=pi ∼32.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1405–1423
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Figure 9. M =3 �ow in an air intake for the R52:1 ramp geometry: total pressure
recovery (left) and the pressure loss due to oblique and normal shocks (right) for various
values of the back pressure (OSL: losses due to oblique shocks, TNSL: loss due to

terminal normal shock, and TL: total loss).

Figure 10. M =3 �ow in an air intake for the R52:1 ramp geometry: �ow distortion index
for various values of the back pressure.

4.5. E�ect of ramp geometry

It is well known that in a quasi one-dimensional �ow, for �xed inlet Mach number and
exit pressure condition, the start-up of a intake solely depends on the throat-to-inlet capture
area ratio (At=Ai). This fact has been widely accepted and practiced even for the case of
two-dimensional �ows. For example, to start an inlet it is suggested that either an increase
in the throat area or momentarily over speeding, is required to establish the �ow through a
two-dimensional supersonic mixed-compression inlet. In the present study it is found that, in
addition to At=Ai, the ramp geometry plays a signi�cant role in the starting behaviour of the
two-dimensional supersonic inlet. To demonstrate this phenomena, results are presented for
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Figure 11. M =3 �ow in an air intake for various ramp geometries: Mach number distribution near the
throat at t = 0:8. For all the cases the throat area is �xed and the conditions at the exit correspond to

supersonic out�ow. Also shown in broken lines is the location of throat.

an inlet for four di�erent ramp geometries as shown in Figure 2. These are denoted by R54:5,
R54:1, R53:3 and R52:1. The numerals re�ect the end location of the second ramp, in inches,
from the leading edge of the intake. The geometry of the inlet between the end of the second
ramp and geometric throat is de�ned by a third-order polynomial. All the four geometries
have the same throat area and its location. As seen from Figure 2, the increase in the second
ramp length leads to higher curvature of the ramp just upstream of the throat.
Computations for all the four geometries correspond to supersonic out�ow of the inlet; no

boundary condition is imposed at the exit of the air intake. The �nite element mesh used for
the cases is very similar to that shown in Figure 3 and the same time step is utilized. All
the other parameters for the four cases are identical. It is observed that the R54:5 and R54:1
inlets unstart, whereas the remaining two inlets start.
The instantaneous Mach number distribution for all the four cases at t=0:8 is shown in

Figure 11. Also shown in Figure 11 is the location of the geometric throat. It is observed
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that the last main re�ected oblique shock from the cowl surface lies in the convergent section
for the R54:5 and R54:1 cases and in the divergent section for the other two geometries. The
re�ected oblique shock waves just upstream of the throat are associated with a normal shock
segment close to the cowl surface. A study of the �ow related to all the cases reveals that
increase in the second ramp length leads to (a) stronger oblique shocks close to the throat and
their more upstream location and (b) delay of the expansion waves to a more downstream
location. These phenomena result in the formation of stronger normal shock segments at the
cowl surface for the cases with longer second ramp. Consequently, the instantaneous mass
�ow rate at the throat reduces causing the �ow to accumulate upstream of the throat. The
mass �ow rates, at t=0:8, at the throat in the case of R54:5 and R54:1 are 99:76 and 99:92%,
respectively, of the value based on the captured area. This causes the pressure in the inlet to
rise and leads to the formation of a normal shock in the convergent portion. Subsequently,
the inlet unstarts. In contrast, the mass �ow rates at the throat, for R52:1 and R53:3, are equal
to the value based on captured area. As is expected, inlet R54:5 takes lesser time than R54:1
to unstart.
These computations clearly indicate the signi�cance of the geometry of the ramp in the

throat region for ‘starting’ the inlet. It will be interesting to extend the study to investigate
this e�ect on viscous �ows.

5. CONCLUDING REMARKS

Finite element computation of inviscid �ow in mixed compression two-dimensional supersonic
inlets have been presented. The computations are capable of simulating the start-up and unstart
of air intakes. The critical back pressure to inlet pressure ratio, beyond which the inlet unstarts,
is found to be 32.4. Compared to experimental results and earlier computational results for
viscous �ows, as expected, it is found that the critical pressure and corresponding total pressure
recovery are higher for inviscid �ows. The variation between the total pressure recovery and
the back pressure is almost linear. The location of the normal shock dictates the performance
of a supersonic mixed compression inlet. Minimal losses occur when the normal shock is
located close to the throat. However, the inlet unstarts as soon as the normal shock moves
upstream of the throat in the convergent part of the intake. As the ratio of back pressure to
inlet static pressure increases from 25 to 32.4, total pressure losses decrease from 26 to 7:21%.
Distortion index is found in the acceptable range of 3–7%.
It is found that in addition to the throat-to-inlet capture area ratio, the ramp geometry plays

an important role in the start-up dynamics. This �nding may have signi�cant implications in
the design of air-intake systems and controlling their start-up.

NOMENCLATURE

� density
u velocity with components (u1; u2)
e total energy per unit mass
p pressure
i internal energy per unit mass
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� ratio of speci�c heats
R the ideal gas constant
� temperature
U vector of conservation variables (�; �u1; �u2; �e)
Fi Euler �ux vector in direction i
Ai Euler Jacobian Matrix (@Fi=@U)
Sh �nite element trial function space
Vh weighting function space
ndof the number of degrees of freedom
Uh the discrete solution vector
Wh the weight function vector
c the wave speed
h the element length
� stabilizing coe�cient in the shock-capturing term
� stabilizing coe�cient in the SUPG terms
pb back-pressure at the exit of the intake
pi the inlet static pressure
p0 stagnation pressure
TPR total pressure recovery
ID Inlet Distortion
OSL pressure losses due to oblique shocks
TNSL pressure loss due to terminal normal shock
TL total pressure loss
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